Abstract
ABSTRACTComputational fluid dynamics simulations were performed to investigate the behavior of dilute phase pneumatic conveying of plastic pellets in a horizontal circular pipe. The pellets are 200 µm in diameter and 1000 kg/m3 in density. A parametric study was performed to investigate the effects of turbulence model and model collision parameters on pressure drop, solid’s volume fraction and velocity profiles. Among model collision parameters, specularity coefficient has considerable effect on the pressure drop. Moreover, the results from simulations carried out for different solid loadings and velocities were compared with experimental data found in the literature. The air velocities range from 6 to 15 m/s and solids to air mass flow ratios range from 1 to 3. At higher air velocities, the pressure drops predicted by the standard k-omega turbulence model are higher than the pressure drops predicted by the standard k-epsilon model. In contrast, at lower gas velocities, the standard k-epsilon model predicts higher pressure drops compared to the standard k-omega turbulence model. However, no significant difference in solids and air velocity profiles is observed for the two different turbulence models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.