Abstract

Cryogenic condensation is an attractive option for controlling VOC emissions. Cryogenic condensation can offer lower operational costs than conventional abatement technologies like thermal oxidation and adsorption. At the low temperatures (ca. −100 °C) used in cryogenic condensation, many high melting point VOCs will freeze or desublimate. A fine particulate solid could form under the temperature gradients inside the condenser, becoming entrained in the gas phase on exit. This paper reports results in modelling the process using CFD. In this paper we present an inert DPM model in 3D and a dynamic DPM model in 2D to investigate this problem through CFD.The 3D results demonstrate particles must grow beyond a certain size to prevent entrainment in the outlet gas flow. These sizes are: 12 μm at 150 Nm³/h (Stk99% = 0.18 at Redh = 4600); 16 μm at 100 Nm³/h (Stk99% = 0.22 at Redh = 3000); 23 μm at 50 Nm³/h (Stk99% = 0.23 at Redh = 1500). The 2D results demonstrate a DPM model (Eulerian–Lagrangian model) of nucleation and growth of particles during cryogenic condensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.