Abstract

Many aerosols in the environment are hygroscopic and grow in size once inhaled into the humid respiratory tract. The deposited amount and the distribution of the deposited particles among airways differ from insoluble particles of the same initial diameter. As particles grow in size, diffusive behavior tends to diminish while impaction and sedimentation effects increase. A multiple-path model for deposition of hygroscopic particles in the respiratory tract was developed for symmetric and asymmetric lung geometries by implementing particle size change in a model of insoluble particle deposition in lungs. Particle growth by molecular diffusion of water vapor to the particle surface was formulated. The growth model included temperature depression, solute, Kelvin, and Fuchs effects. Particle growth during travel time in each lung airway was computed. Average loss efficiency per airway was calculated by incorporating contributions from particles of various sizes acquired in that airway. A mass balance on the n...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.