Abstract

Purpose – Aging of the oil wells leads to a decrease in reservoir pressure and also to an increase in the water, gas and abrasive particles content. Therefore, there is a need for the oil pumps exploitation characteristics improvements. This paper aims to generate a valuable numerical model which will provide a useful tool to study various cases. Design/methodology/approach – Computational fluid dynamics (CFD) analysis of the generation of so-called coherent structures of eddies and turbulence in the peripheral area of the vortex rotor mounted at the back side of centrifugal rotor was undertaken. After detailed analysis of the influence of the used turbulence models on the results, a hybrid turbulent model Detached Eddies Simulation (DES) was chosen as the most suitable. Findings – Numerical control volume method with unsteady solver and DES turbulence model was proven to be valuable tool for flow analysis in the centrifugal pumps. Having in mind that DES turbulence model consumes much less computational time than large eddies turbulence model, this is a very useful fact that resulted from this research. Practical implications – The proven numerical model is robust and reliable enough to become a standard method in simulating flow and other physical phenomena occurring in centrifugal pumps and similar turbo machines. This makes it possible to easily research different factors that influence their performances. Originality/value – Comprehensive experimental and CFD study was performed which made it possible to conduct detailed validation and verification of described CFD model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.