Abstract

This paper presents a numerical model of the laser welding of steel, taking into account the heat and mass flows, as well as thermal effects associated with phase transformations. It was assumed that the heat source is a laser with a symmetrical power distribution of the TEM10 beam in two welding condition variants: a stationary heat source and a source moving at a constant speed along the sample. After reaching the melting temperature, the movement of the liquid phase was forced by the Marangoni effect acting on the surface of the welding pool. For the laser power applied, the surface of the welding pool was assumed to be flat. It was proposed an algorithm for the forecasting of the phase changes during heating and cooling. Diffusive phase transformations during cooling were modelled using Johnson-Mehl-Avrami-Kolmogorov (JMAK) equations. Diffusionless transformations occurring when cooling rates exceed the critical ones were modelled using Koistinen-Marburger (KM) equations. Calculations were made for a rectangular sample welded in air and cooled spontaneously in the atmosphere. The boundary conditions were simulated assuming a constant coefficient of heat exchange and radiation to the environment. The start and end time of the changes occurring in the cooling phase were calculated based on the average cooling rate in the temperature range 800–500°C (v8/5). The model was tested for the test material: S355J2 steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call