Abstract

Computational Fluid Dynamics (CFD) and wind tunnel analysis were conducted to investigate the performance of a uni-directional wind catcher. A detailed experimental benchmark model was created using rapid prototyping and tested in a closed-loop subsonic wind tunnel. An accurate geometrical representation of the wind tunnel test set-up was recreated in the numerical modelling. Experimental results for the indoor and external airflow, supply rate, and pressure coefficients were compared with the numerical results. Smoke visualisation experiment was also conducted to further analyse the detailed airflow structure within the wind catcher and also inside the test room. Following the successful validation of the benchmark CFD model, cylindrical Heat Transfer Devices (HTD) were integrated into the uni-directional wind catcher model to reduce the temperature of air induced into the ventilated space. The findings of the CFD study displayed that the proposed wind catcher was capable of reducing the supply temperature by up to 12 K within the micro-climate depending on the outdoor air speed. However, the addition of the cylindrical HTD also reduced the air supply rates by up to 20–35%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.