Abstract

A computational fluid dynamics model of a healthy, a stenotic and a post-operatory stented human trachea was developed to study the respiration under physiological boundary conditions. For this, outflow pressure waveforms were computed from patient-specific spirometries by means of a method that allows to compute the peripheral impedance of the truncated bronchial generation, modelling the lungs as fractal networks. Intratracheal flow pattern was analysed under different scenarios. First, results obtained using different outflow conditions were compared for the healthy trachea in order to assess the importance of using impedance-based conditions. The resulted intratracheal pressures were affected by the different boundary conditions, while the resulted velocity field was unaffected. Impedance conditions were finally applied to the diseased and the stented trachea. The proposed impedance method represents an attractive tool to compute physiological pressure conditions that are not possible to extract in vivo. This method can be applied to healthy, pre- and post-operatory tracheas showing the possibility of predicting, through numerical simulation, the flow and the pressure field before and after surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.