Abstract

Air intake is a crucial component for supersonic and hypersonic air breathing propulsion devices. The intake must provide the required mass flow rate of air with minimal loss of stagnation pressure. A major difficulty in the stable operation of an intake is associated with shock wave boundary layer interaction (SBLI). This causes boundary layer separation and adverse pressure gradients which lead to total pressure loss, flow unsteadiness and flow distortion in the intake system. Passive control devices such as micro-ramp, thick-vanes provide better boundary layer control and reduce parasitic drag. The proposed study aims to perform CFD analysis of micro-ramp for hypersonic flows and validate the results with the available experimental data. Two micro ramp models namely MR80 and MR40 are considered for this study. Results obtained show the presence of micro ramp successfully delayed the flow separation and helped to suppress SBLI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call