Abstract

The thermal control of electronic devices is become an essential due to heavy uses in the modern world. To overcome this difficulty, the utilization of microchannel heat sink is an important device to cool the electronic circuits. So it is required for better understanding of the fluid flow and heat transfer in microchannel heat sink. Last two decades, a lot of investigation was carried out to improve the performance of the microchannel heat sink. The current paper deals with the study of conjugate heat transfer of a silicon-based microchannel heat by making a three-dimensional model. The 3-D model of microchannel heat sink consists of a silicon substrate of 10 mm length having rectangular cross section with different geometries. The impact of geometry on the distribution of temperature in the microchannel heat sink is presented and discussed by taking constant heat source and constant pumping power. This model was validated by comparing the obtained results with previously published papers on geometric optimization of a microchannel heat sink with liquid flow. A suitable geometric was found out by considering heat transfer, fluid flow keeping in mind of manufacturing the microchannel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call