Abstract

Recently, magnetic targeted drug delivery has been focused on the efficiency of magnetic nanoparticles (MNP) encapsulated in polymeric materials and drug molecules. The MNP can be introduced into the blood stream intravenously and be guided to the target site by the use of a magnetic field. The ability of the therapeutic agents to access the target site effectively depends on physicochemical properties of the drug loaded MNP, field strength and geometry, depth of the target tissue, rate of blood flow and vascular supply. A computational fluid dynamics (CFD) approach is utilized in this study to understand the fluid flow mechanism of MNP introduced in the blood vessel in the presence of a magnetic field. The effect of magnetic capture on the flow characteristics of the blood was investigated. CFD technique may offer insight into the mechanism of time-varying fluid flow in human arteries. This knowledge can be harnessed to improve magnetic capture and drug efficiency. The focus of this study is on how the size of the blood vessels, the strength of the magnetic field, and the velocity of the fluid within the vessels affect the delivery of the therapeutic agents. The results would be useful for the biomedical and pharmaceutical industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.