Abstract
High efficiency and low fuel consumption make the contrarotating open rotor (CROR) system a viable economic and environmentally friendly powerplant for future aircraft. While the potential benefits are well accepted, concerns still exist with respect to the vibrations and noise caused by the aerodynamic interactions of CROR systems. In this paper, emphasis is placed on the detailed analysis of the aerodynamic interactions between the front and aft propellers of a puller CROR configuration. For the first step, unsteady Reynolds-averaged Navier-Stokes (URANS) simulations coupled with dynamic patched grid technology are implemented on the isolated single-rotating propeller (SRP) configuration in various operating conditions in order to test the accuracy and feasibility of the numerical approach. The numerical results are verified by a wind tunnel test, showing good agreements with the experimental data. Subsequently, the URANS approach is applied to the CROR configuration. The numerical results obtained through the URANS approach help to improve the understanding of the complex flow field generated by the CROR configuration, and the comparison of SRP flow field and CROR flow field allows for a detailed analysis of the aerodynamic interactions of the front propeller blade wakes and tip vortices with the aft propeller. The main reason of the aerodynamic interactions is the mutual effects of the blade tip vortices, and the aft propeller reduces the strength of the blade tip vortices of the front propeller. Aerodynamic interactions will lead to the periodic oscillations of the aerodynamic forces, and the frequency of the oscillations is linked to the blade numbers. In addition, a CROR has a larger thrust and power coefficient than that of the SRP configuration in the same operating conditions. The URANS approach coupled with a dynamic patched grid method is tested to be an efficient and accurate tool in the analysis of propeller aerodynamic interactions.
Highlights
In modern aircrafts, besides supersonic and transonic mainline airliners, regional airliners have the properties of smaller weight and size, lower flight speed and altitude, and good maneuverability; as a result, propeller-driven aircrafts can meet these requirements very well
An analysis of aerodynamic interactions was conducted for a 6 × 6 puller contrarotating open rotor (CROR) configuration by using a dynamic patched grid method-based unsteady Reynolds-averaged Navier-Stokes (URANS) numerical simulation approach
The URANS approach has been applied to an isolated single-rotating propeller (SRP) configuration with wind tunnel test verification, and this numerical approach is validated to be an efficient and accurate tool in the investigation of propeller slipstream and aerodynamic characteristics
Summary
Besides supersonic and transonic mainline airliners, regional airliners have the properties of smaller weight and size, lower flight speed and altitude, and good maneuverability; as a result, propeller-driven aircrafts can meet these requirements very well. Along with people’s attentions to environment issues in recent decades, countries around the world are calling for reducing emissions from aircrafts; the demands of novel and efficient propeller systems have greatly increased. Such installation effects will considerably influence the inflow of the propeller compared to an isolated CROR [16,17,18]. The same numerical method is applied to an isolated CROR configuration in different operating conditions with the specific focus on analyzing the mechanism of the complex flow field and the aerodynamic interactions between the front propeller and the aft propeller [23, 24]. Some conclusions are drawn with respect to the CROR flow field and aerodynamic interactions
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have