Abstract

The continued emergence of SARS-CoV-2 variants of concern (VOCs) has raised great challenges for epidemic prevention and control. A rapid, sensitive, and on-site SARS-CoV-2 genotyping technique is urgently needed for individual diagnosis and routine surveillance. Here, a field-deployable ultrasensitive CRISPR-based diagnostics system, called Chemical additive-Enhanced Single-Step Accurate CRISPR/Cas13 Testing system (CESSAT), for simultaneous screening of SARS-CoV-2 and its five VOCs (Alpha, Beta, Gamma, Delta, and Omicron) within 40min was reported. In this system, a single-step reverse transcription recombinase polymerase amplification-CRISPR/Cas13a assay was incorporated with optimized extraction-free viral lysis and reagent lyophilization, which could eliminate complicated sample processing steps and rigorous reagent storage conditions. Remarkably, 10% glycine as a chemical additive could improve the assay sensitivity by 10 times, making the limit of detection as low as 1 copy/μL (5 copies/reaction). A compact optic fiber-integrated smartphone-based device was developed for sample lysis, assay incubation, fluorescence imaging, and result interpretation. CESSAT could specifically differentiate the synthetic pseudovirus of SARS-CoV-2 and its five VOCs. The genotyping results for 40 clinical samples were in 100% concordance with standard method. We believe this simple but efficient enhancement strategy can be widely incorporated with existing Cas13a-based assays, thus leading a substantial progress in the development and application of rapid, ultrasensitive, and accurate nucleic acid analysis technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call