Abstract

In his third notebook, Ramanujan claims that $$ \int_0^\infty \frac{\cos(nx)}{x^2+1} \log x \,\mathrm{d} x + \frac{\pi}{2} \int_0^\infty \frac{\sin(nx)}{x^2+1} \mathrm{d} x = 0. $$ In a following cryptic line, which only became visible in a recent reproduction of Ramanujan's notebooks, Ramanujan indicates that a similar relation exists if $\log x$ were replaced by $\log^2x$ in the first integral and $\log x$ were inserted in the integrand of the second integral. One of the goals of the present paper is to prove this claim by contour integration. We further establish general theorems similarly relating large classes of infinite integrals and illustrate these by several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.