Abstract

We prove several old and new theorems about finite sums involving characters and trigonometric functions. These sums can be traced back to theta function identities from Ramanujan's notebooks and were first systematically studied by Berndt and Zaharescu where their proofs involved complex contour integration. We show how to prove most of Berndt–Zaharescu's and some new identities by elementary methods of discrete Fourier analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.