Abstract

Alzheimer's disease (AD) is associated with impaired cerebral circulation which underscores diminished delivery of blood oxygen and nutrients to and throughout the brain. In the 3xTg-AD mouse model, we have recently found that > 10 cerebrovascular miRNAs pertaining to vascular permeability, angiogenesis, and inflammation (e.g., let-7d, miR-99a, miR-132, miR-133a, miR-151-5p, and miR-181a) track early development of AD. Further, endothelial-specific miRNAs (miR-126-3p, miR-23a/b, miR-27a) alter with onset of overall AD pathology relative to stability of smooth muscle/pericyte-specific miRNAs (miR-143, miR-145). We tested the hypothesis that cerebrovascular miRNAs indicating AD pathology share mRNA targets that regulate key endothelial cell functions such as angiogenesis, vascular permeability, and blood flow regulation. As detected by NanoString nCounter miRNA Expression panel for 3xTg-AD mice, 61 cerebrovascular miRNAs and respective mRNA targets were examined using Ingenuity Pathway Analysis for canonical Cardiovascular (Cardio) and Nervous System (Neuro) Signaling. The number of targets regulated per miRNA were 21±2 and 33±3 for the Cardio and Neuro pathways respectively, whereby 14±2 targets overlap among pathways. Endothelial miRNAs primarily target members of the PDE, PDGF, SMAD, and VEGF families. Individual candidates regulated by≥4 miRNAs that best mark AD pathology presence in 3xTg-AD mice include CFL2, GRIN2B, PDGFB, SLC6A1, SMAD3, SYT3, and TNFRSF11B. miRNAs selective for regulation of endothelial function and respective downstream mRNA targets support a molecular basis for dysregulated cerebral blood flow regulation coupled with enhanced cell growth, proliferation, and inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.