Abstract

Misfolding and aggregation of amyloid β (Aβ) are key features of Alzheimer's disease (AD) pathogenesis, but the molecular events controlling this process are not known in detail. In vivo, Aβ aggregation and plaque formation occur in the interstitial fluid of the brain extracellular matrix. This fluid communicates freely with cerebrospinal fluid (CSF). Here, we examined the effect of human CSF on Aβ aggregation kinetics in relation to AD diagnosis and carrier status of the apolipoprotein E (APOE) ε4 allele, the main genetic risk factor for sporadic AD. The aggregation of Aβ was inhibited in the presence of CSF and, surprisingly, the effect was more pronounced in APOE ε4 carriers. However, by fractionation of CSF using size exclusion chromatography, it became evident that it was not the ApoE protein itself that conveyed the inhibition, since the retarding species eluted at lower volume, corresponding to a much higher molecular weight, than ApoE monomers. Cholesterol quantification and immunoblotting identified high-density lipoprotein particles in the retarding fractions, indicating that such particles may be responsible for the inhibition. These results add information to the yet unresolved puzzle on how the risk factor of APOE ε4 functions in AD pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.