Abstract

FTO (fat mass and obesity-associated protein) demethylates N6-methyladenosine (m6A), which is a critical epitranscriptomic regulator of neuronal function. We previously reported that ischemic stroke induces m6A hypermethylation with a simultaneous decrease in FTO expression in neurons. Currently, we evaluated the functional significance of restoring FTO with an adeno-associated virus 9, and thus reducing m6A methylation in poststroke brain damage. Adult male and female C57BL/6J mice were injected with FTO adeno-associated virus 9 (intracerebral) at 21 days prior to inducing transient middle cerebral artery occlusion. Poststroke brain damage (infarction, atrophy, and white matter integrity) and neurobehavioral deficits (motor function, cognition, depression, and anxiety-like behaviors) were evaluated between days 1 and 28 of reperfusion. FTO overexpression significantly decreased the poststroke m6A hypermethylation. More importantly, exogenous FTO substantially decreased poststroke gray and white matter damage and improved motor function recovery, cognition, and depression-like behavior in both sexes. These results demonstrate that FTO-dependent m6A demethylation minimizes long-term sequelae of stroke independent of sex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call