Abstract

The effects of chronic 17beta-estradiol (E2) depletion, via ovariectomy (OVX), and its repletion, on cortical cerebral blood flow (CBF) and EEG activities during forebrain ischemia, as well as post-ischemic recovery and neuropathology, were assessed and compared with results obtained in normal female rats. We also examined whether neuronal nitric oxide synthase (nNOS) activity is affected by OVX and E2 replacement and whether NOS-derived NO supports vasodilation during ischemia. OVX females displayed a significantly lower CBF during ischemia (10% of baseline) than did normal females (23% of baseline). In OVX rats, given chronic low-dose E2 treatment (0.1 mg kg(-1) day(-1)), intra-ischemic CBF was similar to normal females (25% of baseline). However, at supraphysiologic E2 doses (> or = 0.5 mg kg(-1) day(-1)), that benefit was diminished or lost. Intra-ischemic EEG power reductions and post-ischemic survival rates, neurological dysfunction, and histopathology displayed similar relative differences among groups as the CBF findings. Intra-ischemic CBF was reduced by nNOS inhibition, with ARL 17477, in normal and low-dose E2-treated OVX rats (4-8% baseline). The repressed intra-ischemic vasodilating function in OVX rats may be due to reductions in nNOS activity, because untreated OVX rats showed a 50% lower cortical nNOS activity than that in normal rats and in rats treated with low or high dose (5 mg kg(-1) day(-1)) E2. However, the inability to restore vasodilating function despite normalization of nNOS activity indicates that another mechanism is responsible for the repression of vasodilatory function in the high-dose group. These findings suggest that E2, at levels within the physiological range, promotes ischemic neuroprotection via improving vasodilating capacity. One possible mechanism may relate to E2 enhancing brain nNOS expression and activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.