Abstract
AimTo determine whether targeting mild hypercapnia (PaCO2 7 kPa) would yield improved cerebral blood flow and metabolism compared to normocapnia (PaCO2 5 kPa) with and without targeted temperature management to 33 °C (TTM33) in a porcine post-cardiac arrest model. Methods39 pigs were resuscitated after 10 minutes of cardiac arrest using cardiopulmonary bypass and randomised to TTM33 or no-TTM, and hypercapnia or normocapnia. TTM33 was managed with intravasal cooling. Animals were stabilized for 30 minutes followed by a two-hour intervention period. Hemodynamic parameters were measured continuously, and neuromonitoring included intracranial pressure (ICP), pressure reactivity index, cerebral blood flow, brain-tissue pCO2 and microdialysis. Measurements are reported as proportion of baseline, and areas under the curve during the 120 min intervention period were compared. ResultsHypercapnia increased cerebral flow in both TTM33 and no-TTM groups, but also increased ICP (199% vs. 183% of baseline, p = 0.018) and reduced cerebral perfusion pressure (70% vs. 84% of baseline, p < 0.001) in no-TTM animals. Cerebral lactate (196% vs. 297% of baseline, p < 0.001), pyruvate (118% vs. 152% of baseline, p < 0.001), glycerol and lactate/pyruvate ratios were lower with hypercapnia in the TTM33 group, but only pyruvate (133% vs. 150% of baseline, p = 0.002) was lower with hypercapnia among no-TTM animals. ConclusionIn this porcine post-arrest model, hypercapnia led to increased cerebral flow both with and without hypothermia, but also increased ICP and reduced cerebral perfusion pressure in no-TTM animals. The effects of hypercapnia were different with and without TTM.(Institutional protocol number: FOTS, id 14931)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have