Abstract

This study was performed to compare microregional O2 supply and consumption balance in spontaneously hypertensive rats (SHR), normotensive Wistar Kyoto rats (WKY), and in phenylephrine-induced acutely hypertensive WKY (WKY + ph) rats. Under isoflurane anesthesia, a middle cerebral artery (MCA) of SHR (n = 7) and WKY (n = 14) rats was occluded. Seven of the WKY rats were infused with phenylephrine (WKY + ph) to keep the mean arterial pressure (MAP) at the same level as that of the SHR. In all animals, 1 h after MCA occlusion, regional cerebral blood flow (rCBF) was determined using an autoradiographic technique, and microregional arterial and venous O2 saturations were determined using microspectrophotometry. MAP was 76 +/- 4 (SD), 136 +/- 15, and 132 +/- 12 mm Hg for the WKY, WKY + ph, and SHR groups, respectively. All variables describing regional O2 balance and rCBF were similar between the SHR and the WKY groups in the ischemic cortex as well as in the contralateral cortex. With phenylephrine infusion, rCBF of both the ischemic cortex and the contralateral cortex were increased in the WKY group. The average O2 supply-to-consumption ratio in the ischemic cortex was higher in the WKY + ph than in the WKY or SHR group. In the ischemic cortex, heterogeneity of venous O2 saturation (SVO2), expressed as a coefficient of variation (CV = 100 times SD/mean), was significantly lower in the WKY + ph (18.3 +/- 2.4) group than in the SHR (30.5 +/- 11.8) or in the WKY (31.3 +/- 9.0) group. The number of veins with low O2 saturation (SVO2 < 40%) in the ischemic cortex was significantly lower in the WKY + ph than in the SHR or in the WKY group. Our data suggest that in chronically hypertensive animals, cerebrovascular adaptations enable the microregional O2 balance in focal ischemia to be maintained at a level similar to that of normotensive animals. However, in normotensive animals with focal cerebral ischemia, an acute increase of MAP improves microregional O2 balance. (Anesth Analg 1996;82:587-92)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.