Abstract
Cerebral microinfarcts (CMIs) are small ischemic lesions invisible to the naked eye at brain autopsy, while the larger ones (0.5-4 mm in diameter) have been visualized in-vivo on magnetic resonance imaging (MRI). CMIs can be detected on diffusion-weighted imaging (DWI) as incidental small DWI-positive lesions (ISDPLs) and on structural MRI for those confined to the cortex and in the chronic phase. ISDPLs may evolve into old cortical-CMIs, white matter hyperintensities or disappear depending on their location and size. Novel techniques in neuropathology and neuroimaging facilitate the detection of CMIs, which promotes understanding of these lesions. CMIs have heterogeneous causes, involving both cerebral small- and large-vessel disease as well as heart diseases such as atrial fibrillation and congestive heart failure. The underlying mechanisms incorporate vascular remodeling, inflammation, blood-brain barrier leakage, penetrating venule congestion, cerebral hypoperfusion, and microembolism. CMIs lead to clinical outcomes, including cognitive decline, a higher risk of stroke and mortality, and accelerated neurobehavioral disturbances. It has been suggested that CMIs can impair brain function and connectivity beyond the microinfarct core and are also associated with perilesional and global cortical atrophy. This review aims to summarize recent progress in studies involving both cortical-CMIs and ISDPLs since 2017, including their detection, etiology, risk factors, MRI correlates, and clinical consequences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have