Abstract
The hippocampus provides a suitable area in the brain for the analysis of neuronal plasticity after application of a selective lesioning technique. Using histochemistry and autoradiography, we studied synaptic reorganization in the rat hippocampus with selective CA1 pyramidal cell lesioning caused by transient forebrain ischemia after long-term survival. An autoradiographic study was performed on second messenger systems (3H]inositol 1,4,5-trisphosphate, [3H]forskolin and [3H]phorbol 12,13-dibutyrate binding). One-hundred days after ischemia, depletion of CA1 pyramidal cells and marked shrinkage of the CA1 subfield was noted in spite of unaltered thickness of the CA3 band and of the dentate molecular layers. Although neuronal density in the CA3 region of animals killed seven days after ischemia was not different from the normal group, 78% of animals showed neuronal loss of 30–50% in the stratum pyramidale of the CA3b 100 days after recirculation. Sixty-seven per cent of animals exhibited supragranular mossy fiber sprouting in the dentate gyrus. However, CA3 neuronal loss did not correlate with mossy fiber sprouting. Succinic dehydrogenase was depleted in the CA1 100 days after ischemia, and animals with CA3 damage showed a reduction of succinic dehydrogenase activity in the CA3. In contrast to the unaltered acetylcholinesterase in the animals killed seven days after ischemia, high density bands of acetylcholinesterase activity in the stratum pyramidale of the CA1 were found to be broadened 100 days after ischemia. In the CA1 subfield, subnormal activity of [3H]phorbol 12,13-ditutyrate and [3H]forskolin binding were observed in spite of the depleted [3H]inositol 1,4,5-triphosphate binding. [3H]Forskolin binding in the hilus had increased by 62% 100 days after ischemia, although binding in the stratum lucidum of the CA3 and in the stratum moleculare of the dentate gyrus was unaltered. However, no visible supragranular increase in [3H]forskolin binding was observed.These results indicate that long-term survival after CA1 pyramidal cell depletion caused by transient forebrain ischemia induced the modulation of neuronal activity and synaptic rearrangements in the whole hippocampal formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have