Abstract

Ceramide synthases (CerS) are integral membrane proteins of the endoplasmic reticulum. Six mammalian CerS have been described, with each utilizing fatty acyl CoAs of relatively defined chain lengths for N-acylation of the sphingoid long chain base. In this chapter, we review the main functional features of the CerS proteins, discuss their fatty acid specificity, kinetics, tissue distribution and mode of inhibition, as well as possible posttranslational modifications. We then address the reason that mammals contain six distinct CerS, whereas most other enzymes in the sphingolipid biosynthetic pathway only occur in one or two isoforms. Finally, we discuss the putative roles of CerS and the ceramide derived from the CerS, in signaling pathways and in development of disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.