Abstract

The sphingomyelin pathway is a ubiquitous, evolutionarily conserved signaling system initiated by hydrolysis of the plasma membrane phospholipid sphingomyelin to generate ceramide. Ceramide acts as a second messenger in activating the apoptotic cascade. Diverse cytokine receptors and environmental stresses utilize ceramide to signal apoptosis. In several cell systems ceramide links to the stress-activated protein kinase (SAPK)/c-jun kinase (JNK) cascade to signal apoptosis. The engagement of the sphingomyelin pathway in signaling apoptosis is tightly regulated by anti-apoptotic control mechanisms, and the balance between pro- and anti-apoptotic systems determines the magnitude of the apoptotic response in vitro and in vivo. This review describes the known elements and molecular ordering of ceramide-mediated apoptosis and the anti-apoptotic mechanisms that regulate its expression. Understanding of pro- and anti-apoptotic signaling involved in ceramide-mediated apoptosis and the modes of their co-ordinated function may yield opportunities for pharmacological interventions with potential for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.