Abstract

The fluidity and compositional heterogeneity of the mammalian plasma membrane play deterministic roles in a variety of membrane functions. Designing model bilayer systems allows for compositional control over these properties. Ceramide is a phospholipid capable of extensive headgroup-region hydrogen bonding, and we report here on the role of ceramide in planar model bilayers. We use fluorescence recovery after photobleaching (FRAP) to obtain translational diffusion constants of two chromophores in supported model bilayers composed of cholesterol, 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), sphingomyelin, and ceramide. FRAP data for perylene report on the acyl chain region of the model bilayer and FRAP data for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) sense diffusional dynamics in the bilayer headgroup region. Dynamics in the headgroup region exhibit anomalous diffusion behavior that is characteristic of spatially heterogeneous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call