Abstract

This study investigates ceramic fused filament fabrication (CF3) 3D printing of alumina with an emphasis on the impact of particle morphology on feedstock preparation and printability. Spherical powder displayed superior flow with higher apparent density, tap density, and powder packing fraction compared to irregular powder. A 55 vol % powder loading was chosen to ensure good flowability during printing. Irregular powder-based feedstocks had 40X higher viscosity than spherical powder feedstocks at 400 s−1 shear rate, posing potential printing challenges. Slow printing speed maintained low feed-rates for consistent material flow. The debinding and sintering process produced macroscopically defect-free alumina components with relative densities above 89 % for both powder morphologies. The focus of the work is on comparing two different powder particle morphologies influencing feedstock behavior, printing fidelity, and sintered part properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.