Abstract

The morphology evolution of copper powder was studied under various ball-milling experimental conditions, such as low and high rotation speeds and a ball diameter of 1 mm and 10 mm. A scanning electron microscope and X-ray diffractometer were used to analyze the copper powder particle size, morphology, structure, and crystallite size. The effect of ball size on copper powder particle morphology in dry-type milling was studied using a planetary ball mill. Spherical copper powders were obtained by ball milling at a high rotation speed and with a ball diameter of 1 mm. The experimental results suggest that the particle size and morphology can be controlled by changing the milling conditions during the ball milling. Ball motion was simulated by using a three-dimensional discrete-element model to obtain the force, energy, and power of the ball motion in the ball mill for two different ball sizes and low and high rotation speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.