Abstract

Changes of composition and structure of various types of polysiloxanes and polycarbosilanes when submitted to irradiation with ions of increasing mass, were analysed by means of several ion-beam analytical techniques, Raman and Fourier transform-infrared spectroscopies. Ion irradiations is as efficient as annealing at temperatures above 1000°C for releasing hydrogen from these organic-inorganic polymers, and the radiolytic evolution of hydrogen is selective, whereas methane, silanes and carbon monoxide are also evolved during heat treatments. The kinetics of the polymer conversion into amorphous ceramics depends strongly on the linear density of energy transferred by ions to electron shells of target atoms, according to the ion energy per nucleon and to the nature of the side groups. Some of the carbon atoms segregate in clusters exhibiting a diamond-like hybridization state, in contrast to the clusters of turbostratic graphite formed in pyrolysed films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.