Abstract

Bimetallic catalysts often outperform monometallic catalysts due to changeable structural orientation, synergistic effects, and integration of two different metal or metal oxide properties. Here, a series of CeO2 nanorods (NR) supported bimetallic CuOx and RuOx catalysts (Cu: Ru ratios of 9:1, 7:3, and 5:5) were prepared using a wet impregnation method. In situ DRIFTS, H2 temperature programmed reduction (H2-TPR), CO temperature programmed desorption (CO-TPD), and other characterization techniques were used to investigate the effect of the Cu:Ru ratio on the activity of low-temperature CO oxidation. Among three catalysts, CeO2 NR supported 7 wt% Cu-3 wt% Ru catalyst after a reduction activation treatment showed the best performance with 100 % CO conversion at 166 °C and the lowest activation energy of 18.37 kJ mol−1. Raman and XPS profiles revealed that the origin of the superior performance is at least partially related to the high surface oxygen vacancy concentration and other distinct oxygen species (physi-/chemi-sorbed oxygen and bulk lattice oxygen), leading to outstanding adsorption and oxidation property of CO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call