Abstract
Treatment of cells arrested in the cell cycle at the G1/S-phase boundary with 5 mM caffeine induces premature mitosis, resulting in chromosomal fragmentation and detachment of centromere-kinetochore fragments, which are subsequently attached to the mitotic spindle and segregated in anaphase. Taking advantage of this in vivo separation of the centromere, we have developed a procedure for isolation of a centromere-enriched fraction of mitotic chromatin. Using this method, we have isolated and cloned DNA from the centromere-enriched material of Chinese hamster cells. One of the clones thus obtained was characterized in detail. It contains 6 kb of centromere-associated sequence that exhibits no recognizable homology with other mammalian centromeric sequences and is devoid of any extensive repetitive structure. This sequence is present in a single copy on chromosome 1 and is species-specific. Distinctive features of the clone include the presence of several A+T-rich regions and clusters of multiple topoisomerase II consensus cleavage sites and other sequence motifs characteristic of nuclear matrix-associated regions. We hypothesize that these features might be related to the more compact packaging of centromeric chromatin in interphase nuclei and mitotic chromosomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have