Abstract

Accurate segregation of homologous chromosomes during meiosis depends on both the presence and the regulated placement of crossovers (COs). The centromere effect, or CO exclusion in pericentromeric regions of the chromosome, is a meiotic CO patterning phenomenon that helps prevent nondisjunction, thereby protecting against chromosomal disorders and other meiotic defects. Despite being identified nearly a century ago, the mechanisms behind this fundamental cellular process remain unknown, with most studies of the Drosophila centromere effect focusing on local influences of the centromere and pericentric heterochromatin. In this study, we sought to investigate whether dosage changes in centromere number and repetitive DNA content affect the strength of the centromere effect, using phenotypic recombination mapping. Additionally, we studied the effects of repetitive DNA function on centromere effect strength using satellite DNA-binding protein mutants displaying defective centromere-clustering in meiotic nuclei. Despite what previous studies suggest, our results show that the Drosophila centromere effect is robust to changes in centromere number, repetitive DNA content, as well as repetitive DNA function. Our study suggests that the centromere effect is unlikely to be spatially controlled, providing novel insight into the mechanisms behind the Drosophila centromere effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.