Abstract

Landslides are serious geohazards that occur under a variety of climatic conditions and can cause many casualties and significant economic losses. Centrifuge modelling, as a representative type of physical modelling, provides a realistic simulation of the stress level in a small-scale model and has been applied over the last 50 years to develop a better understanding of landslides. With recent developments in this technology, the application of centrifuge modelling in landslide science has significantly increased. Here, we present an overview of physical models that can capture landslide processes during centrifuge modelling. This review focuses on (i) the experimental principles and considerations, (ii) landslide models subjected to various triggering factors, including centrifugal acceleration, rainfall, earthquakes, water level changes, thawing permafrost, excavation, external loading and miscellaneous conditions, and (iii) different methods for mitigating landslides modelled in centrifuge, such as the application of nails, piles, geotextiles, vegetation, etc. The behaviors of all the centrifuge models are discussed, with emphasis on the deformation and failure mechanisms and experimental techniques. Based on this review, we provide a best-practice methodology for preparing a centrifuge landslide test and propose further efforts in terms of the seven aspects of model materials, testing design and equipment, measurement methods, scaling laws, full-scale test applications, landslide early warning, and 3D modelling to better understand the complex behaviour of landslides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.