Abstract

The centrifugal spinning method is a recently invented technique to extrude polymer melts/solutions into ultra-fine nanofibres. Here, we present a superior integrated string-based mathematical model, to quantify the nanofibre fabrication performance in the centrifugal spinning process. Our model enables us to analyse the critical flow parameters covering an extensive range, by incorporating the angular momentum equations, the Giesekus viscoelastic constitutive model, the air-to-fibre drag effects and the energy equation into the string model equations. Using the model, we can analyse the dynamic behaviour of polymer melt/solution jets through the dimensionless flow parameters, namely, the Rossby ($Rb$), Reynolds ($Re$), Weissenberg ($Wi$), Weber ($We$), Froude ($Fr$), air Péclet ($Pe^*$) and air Reynolds ($Re^*$) numbers as well as the viscosity ratio ($\delta _s$), corresponding to rotational, inertial, viscous, viscoelastic, surface tension, gravitational, air thermal diffusivity, aerodynamic and viscosity ratio effects. We find that the nonlinear rheology remarkably affects the fibre trajectory, radius and normal stresses. Increasing $Wi$ leads to a thicker fibre, whereas increasing $\delta _s$ shows an opposite trend. In addition, by increasing $Wi$, the fibre curvature is enhanced, causing the fibre to spiral closer to the rotation centre.

Highlights

  • Thanks to their remarkable features such as large surface-to-volume ratio and high porosity, nanofibre webs underpin many everyday technologies, from scaffold production for tissue regeneration in tissue engineering (Barbosa et al 2021), drug delivery in medical technologies and nano-filtration of water and air, to sensor production

  • We quantify the effects of flow parameters on a viscoelastic curved jet in the CS process

  • Throughout the results section, when necessary, we choose the flow parameters to be consistent with experiments; in particular, regarding the fibre flow material properties, such as thermal and rheological features, in most cases we use the properties of PEO dissolved in deionized water

Read more

Summary

Introduction

Thanks to their remarkable features such as large surface-to-volume ratio and high porosity, nanofibre webs underpin many everyday technologies, from scaffold production for tissue regeneration in tissue engineering (Barbosa et al 2021), drug delivery in medical technologies and nano-filtration of water and air, to sensor production The development of the recently invented centrifugal spinning (CS) methods ( known as forcespinning or rotary jet spinning), to fabricate non-woven nanofibre webs, brings important new opportunities for the mass production of nanofibres, from both polymer solutions and melts. In the CS process, jets of polymer melt or solution emerge from a rapidly rotating nozzle under the centrifugal force. As the jets evolve through the space, they stretch into very thin and long fibres, until they land on collectors where the resultant nanofibre web is assembled. Despite its simplicity, the CS process suffers from jet instabilities which can cause the jet

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.