Abstract

Nuclear long-lived spin states represent spin density operator configurations that are exceptionally well protected against spin relaxation phenomena. Their long-lived character is exploited in a variety of Nuclear Magnetic Resonance (NMR) techniques. Despite the growing importance of long-lived spin states in modern NMR, strategies for their identification have changed little over the last decade. The standard approach heavily relies on a chain of group theoretical arguments. In this paper, we present a more streamlined method for the calculation of such configurations. Instead of focusing on the symmetry properties of the relaxation superoperator, we focus on its corresponding relaxation algebra. This enables us to analyze long-lived spin states with Lie algebraic methods rather than group theoretical arguments. We show that the centralizer of the relaxation algebra forms a basis for the set of long-lived spin states. The characterization of the centralizer, on the other hand, does not rely on any special symmetry arguments, and its calculation is straightforward. We outline a basic algorithm and illustrate advantages by considering long-lived spin states for some spin-1/2 pairs and rapidly rotating methyl groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.