Abstract
The relationships among the central path in the context of semidefinite programming, generalized proximal-point method and Cauchy trajectory in a Riemannian manifolds is studied in this paper. First, it is proved that the central path associated to a general function is well defined. The convergence and characterization of its limit point is established for functions satisfying a certain continuity property. Also, the generalized proximal-point method is considered and it is proved that the correspondingly generated sequence is contained in the central path. As a consequence, both converge to the same point. Finally, it is proved that the central path coincides with the Cauchy trajectory in a Riemannian manifold.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have