Abstract

In this paper, we show that the limiting distribution of the real and the imaginary part of the Fourier transform of a stationary random field is almost surely an independent vector with Gaussian marginal distributions, whose variance is, up to a constant, the field’s spectral density. The dependence structure of the random field is general and we do not impose any restrictions on the speed of convergence to zero of the covariances, or smoothness of the spectral density. The only condition required is that the variables are adapted to a commuting filtration and are regular in some sense. The results go beyond the Bernoulli fields and apply to both short range and long range dependence. They can be easily applied to derive the asymptotic behavior of the periodogram associated to the random field. The method of proof is based on new probabilistic methods involving martingale approximations and also on borrowed and new tools from harmonic analysis. Several examples to linear, Volterra and Gaussian random fields will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.