Abstract

This article addresses the problem of defining a general scaling setting in which Gaussian and non-Gaussian limit distributions of linear random fields can be obtained. The linear random fields considered are defined by the convolution of a Green kernel, satisfying suitable scaling conditions, with a non-linear transformation of a Gaussian centered homogeneous random field. The results derived cover the weak-dependence and strong-dependence cases for such Gaussian random fields. Extension to more general random initial conditions defined, for example, in terms of non-linear transformations of χ2-random fields, is also discussed. For an example, we consider the random fractional diffusion equation. The vectorial version of the limit theorems derived is also formulated, including the limit distribution of the parabolically rescaled solution to the Burgers equation in the cases of weakly and strongly dependent initial potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.