Abstract

We show that real, symmetric, centered (zero row sum) positive semidefinite matrices of order $n$ and rank $n-1$ with eigenvalue ratio $\lambda_{\max}/\lambda_{\min}\leq n/(n-2)$ between the largest and smallest nonzero eigenvalue have nonpositive off-diagonal entries, and that this eigenvalue criterion is tight. The result is relevant in the context of matrix theory and inverse eigenvalue problems, and we discuss an application to Laplacian matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.