Abstract

Despite numerous investigations in the past, mechanism of cementite dissolution has still remained a matter of debate. The present work investigates cementite dissolution during cold wire drawing of pearlitic steel (~ 0.8wt% carbon) at medium drawing strain (up to true strain 1.4) and the role of dislocations in the ferrite matrix on the dissolution process. Quantitative phase analysis using x-ray diffraction (XRD) confirms more than 50% dissolution of cementite phase at drawing strain ~ 1.4. Detail analysis of the broadening of ferrite diffraction lines confirms presence of strain anisotropy in ferrite due to high density of dislocations (~ 1015m-2) at drawing strain 1.4. The results of the analysis shows that the screw dislocations near the ferrite-cementite interface are predominantly responsible for pulling the carbon atoms out of the cementite phase leading to its dissolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call