Abstract

Cementing mechanism of bio-phosphate cement was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential scanning calorimetry (TG-DSC) analysis and scanning electron microscopy (SEM). The results of FTIR and XPS show that Si-O bond and Si(2p) electron binding energy in sandstone cemented via chemical and microbiological methods are changed by the binding effects of barium hydrogen phosphate with quartz sand. Compared with barium hydrogen phosphate precipitated in solution, there were higher decomposition temperatures or melting points in sandstone. The FTIR, XPS, and TG-DSC results indicate that the microbial-induced and chemical precipitation of barium hydrogen phosphate can interact with quartz sand to generate van der Waals bond, which plays a role in the binding function between loose sand particles and barium hydrogen phosphate. SEM results show that barium hydrogen phosphate after chemical precipitation in sandstone has better dispersion than microbiological deposition. Therefore, barium hydrogen phosphate via chemical precipitation did not bind loose sand particles into sandstone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.