Abstract
Bone defects after failed total hip arthroplasty can be reconstructed with impacted morselized bone grafts and a cemented cup. In the near future the amount of bone grafts available for surgical purposes will be insufficient. Ceramic calcium phosphates [tricalcium phosphate (TCP) and hydroxyapatite (HA)] have been widely considered as potential bone graft substitutes or bone graft extenders. In the past, mechanical experiments have been performed to determine implant stability of bone grafts and ceramic TCP-HA granules mixes under a compressive load. However, in-vivo migration studies suggest that shear loading may be equally important. This in-vitro study investigated the initial stability of cups reconstructed with various mixes of bone grafts and ceramic TCP-HA granules in a lever-out situation, where shearing is the predominant loading mode. It was found that the cups reconstructed with mixes of bone graft and TCP-HA granules exhibited greater mechanical stability than the cups reconstructed with bone grafts only. It is concluded that from a mechanical standpoint, when considering shear force resistance, 50-50 per cent volume mix and 25-75 per cent volume mix of morselized cancellous bone graft and TCP-HA granules both provide adequate initial cup stability and can be used for acetabular reconstructions with the bone impaction grafting technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.