Abstract
On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.
Highlights
On 11 March 2011, the massive earthquake and tsunami struck the northeast coast of Japan, and led to a series of accidents at the Fukushima Daichi nuclear power plant and resulted in both the subsequent release of a huge quantity of radioactive isotopes into the atmosphere and thousands of tons of water have been catastrophically contaminated[1]
In this study we propose the formation of nano-Prussian blue (PB) on cellulose nano-fiber (CNF) via surface coordination. β(1→4) Linked D-glucose units of CNF consist of abundant hydroxyl groups
Capabilities and behaviors of cesium sorption by the CNF-backboned PB nanoparticles were evaluated via a batch adsorption and a breakthrough approach
Summary
On 11 March 2011, the massive earthquake and tsunami struck the northeast coast of Japan, and led to a series of accidents at the Fukushima Daichi nuclear power plant and resulted in both the subsequent release of a huge quantity of radioactive isotopes into the atmosphere and thousands of tons of water have been catastrophically contaminated[1]. Due to its intrinsic property of forming stable colloids in water, small sized (nano-sized) PB particles (thereby having a larger surface area and a higher adsorbing capacity) can contaminate water For this reason, practical applications have long been limited to medical and/or pharmaceutical treatments[4,14]. Note that some PB analogs, like cobalt ferrocyanide[15,16] and copper ferrocyanide[12], are highly water-insoluble; these analog could be used directly as adsorbents for radioactive cesium eliminations These analogs are costly compared to PB. In our study polyvinyl alcohol (PVA) and polyurethane (PUF) were selected as a potential immobilizer for practical application of the CNF/PB complex material using the form of highly porous sponges. The laboratory scale decontamination of radioactive cesium was further scaled up to the pilot scale, followed by field studies, conducted in Fukushima, Japan
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.