Abstract

Prussian blue (PB) has been well known as a pigment crystal to selectively sequestrate the radioactive cesium ion released from aqueous solutions owing to PB cage size similar to the cesium ion. Because the small size of PB is hard to deal with, the adsorbents containing PB have been prepared in the form of composites causing low sequestration efficiency of cesium. In this study, securely anchored PB nanocrystals on the surface of millimeter-sized porous polyacrylamide (PAAm) spheres (PB@PAAm) have been prepared by the crystallization of PB on the Fe3+ adsorbed PAAm. The securely anchored PB nanocrystals have been demonstrated to be selective and efficient adsorbents for sequestration of the radioactive cesium. The well-interconnected-spherical pores and millimeter-sized diameter of the PB@PAAm adsorbents facilitated permeation of Cs+ into the adsorbent and ease of handling respectively. Especially the well-interconnected-spherical pores allowed that PB@PAAm showed 90% of its maximum Cs+ adsorption capacity within 30 min. The PB@PAAm showed an outstanding Cs+ capture ability of 374 mg/g, high removal efficiency of 85% even at low concentration of Cs+ (10 ng/L), and superior selectivity of Cs+ against interference ions of Na+, K+, Mg2+, and Ca2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.