Abstract

Renewable resource-based aerogels have attracted numerous attention due to the requirement on sustainable multifunctional materials for thermal management. A series of cellulose and nanocarbon composite aerogels have been prepared from a blend of carboxylated cellulose nanofibril (CCNF) with carbon nanotube (CNT), graphene oxide (GO), or carbon fiber (CF) using directional freezing method. CCNF/nanocarbon aerogels from bidirectional freezing exhibit higher compression strength due to bridge structures that are induced by temperature gradient horizontally and vertically. Meanwhile, CCNF/carbon aerogels from bidirectional freezing also have thermal conductivity coefficient (λ) as low as 0.0308 W/(m·K), which increases to 0.0388 W/(m·K) after calcination. The dispersed linear carbon materials CF and CNT in CCNF matrix lead to thermoelectric, Joule heating and photothermal performance of CCNF/nanocarbon aerogels, which is also promoted by calcination. The Seebeck coefficient of CCNF/nanocarbon aerogels ranges from 0.027 to 0.067 mV/K and change into 0.037–0.044 mV/K due to the more uniform carbon network formed after high temperature treatment. A 5–15 V input voltage can induce a temperature increase of 62 ∼ 303 °C for composite aerogel after calcination. A laser with 0.3 W power can result in a rapid temperature increase even to 200 °C in seconds for composite aerogel with and without calcination. These kinds of CCNF/nanocarbon based composite aerogels exhibit ability in thermal management, including thermal insulation, thermoelectric, electric and photo induced heating, which are good candidates for multifunctional aerogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call