Abstract

The increase in antibiotic residues poses a serious threat to ecological and aquatic environments, necessitating the development of cost-effective, convenient, and recyclable adsorbents. In our study, we used cellulose-based layered double hydroxide (LDH) as an efficient adsorbent and nanocarrier for both sulfamethoxazole (SMX) and cefixime (CFX) residues due to their biodegradability and biocompatibility. Chemical processes are measured according to green chemistry metrics to identify which features adhere to the principles. A GREEnness Assessment (ESA), Analytical GREEnness Preparation (AGREEprep), and Analytical Eco-Scale Assessments (ESA) were used to assess the suitability of the proposed analytical method. We extensively analyzed the synthesized CoFe LDH/cellulose before and after the adsorption processes using XRD, FTIR, and SEM. We investigated the factors affecting the adsorption process, such as pH, adsorbent dose, concentrations of SMX and CFX and time. We studied six nonlinear adsorption isotherm models at pH 5 using CoFe LDH, which showed maximum adsorption capacities (qmax) of 272.13 mg/g for SMX and 208.00 mg/g for CFX. Kinetic studies were also conducted. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed on Vero cells in direct contact with LDH nanocomposites to evaluate the cytotoxicity and side effects of cellulose-based CoFe LDH. The cellulose-based CoFe LDH nanocomposite demonstrated excellent cytocompatibility and less cytotoxic effects on the tested cell line. These results validate the potential use of these unique LDH-based cellulose cytocompatible biomaterials for water treatment applications. The cost of the prepared adsorbents was investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.