Abstract

Incorporating activated bentonite clay (BC) into electrospun nanofibres is an established strategy for modulating adsorption behaviour. In the present study, naturally occurring calcium BC was completely activated to sodium BC with a 4 wt% sodium carbonate (Na2CO3)/BC ratio. Composite nanofibre webs were produced from cellulose acetate (CA)/BC spinning solutions using free surface electrospinning, and the effect of BC loadings on viscosity, surface tension and electrical conductivity prior to spinning was studied. Chemical and thermal analyses were conducted on as-spun fibres, and SEM and TEM revealed a nanofibrous morphology consisting of an interpenetrating network of fibres and semi-spherical features resembling jellyfish with an internal core of BC.

Highlights

  • Electrospun polymer nanofibres have interesting characteristics resulting from their sub-micron diameter, fine interconnected porous network and high surface-to-weight ratio compared to other fibrous structures [1]

  • It has been demonstrated that electrospinning of polymer–clay composites with a small amount (1–10 wt%) of clay filler can lead to remarkable improvements in wettability and swelling [42], mechanical properties, including Young’s modulus [19, 24], thermal stability [49], flame retardancy [20], heat distortion temperature [45], UV resistance [25], chemical affinity [33] and gas barrier properties [40] compared to pure polymer nanofibres

  • It is apparent from the compositions of purified bentonite clay (BC) treated with hydrochloric acid (HCl) that CO2 is effectively removed

Read more

Summary

Introduction

Electrospun polymer nanofibres have interesting characteristics resulting from their sub-micron diameter, fine interconnected porous network and high surface-to-weight ratio compared to other fibrous structures [1]. These characteristics promote enhanced surface reactivity and make nanofibres attractive for numerous applications such as air and liquid filtration [2], reinforced composites [3] and medical devices [4]. BC based on the dominant exchangeable cations present is referred to as either calcium, sodium or potassium bentonite [61, 62] The smectite group such as montmorillonite (MMT) is the most dominant mineral in bentonite, representing up to 70–80% by weight, while other minerals in bentonite such as kaolinite and none-clay minerals make up to 20–30% [62].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call