Abstract

In nature, cellulose, lignocellulose and lignin are major sources of plant biomass therefore their recycling is indispensable for the carbon cycle. The synergistic action of a variety of microorganisms is needed for recycling lignocellulosic materials. The capacities of microorganisms to assimilate complex carbohydrates, such as cellulose, hemicellulose and lignin, depend on the ability to produce the enzymes that work synergically. Populations growing in compost piles consist mainly of bacteria (including actinobacteria) and fungi. Polymers such as hemicellulose, cellulose, and lignin are only degraded once the more easily degradable compounds have been consumed. Afterwards, the lignocellulosic materials are partly transformed into humus. In the present review, numerous studies on the isolation of cellulose-degrading bacteria and fungi, their identification, enzymatic activities, and their ability to grow in the presence of lignocellulose and components of these industrial waste streams (phenolic compounds, sulfides, and dyes are analyzed and discussed. This is of particular interest to design future studies to isolate those bacteria that can specifically degrade cellulose matrix and more recalcitrant components such as lignin and aromatic lignin degradation products. Cultivation and characterization of microorganisms alone is not adequate without preservation techniques that do not alter the morphology, physiology or genetics of pure strains. Careful preservation is imperative for future research, teaching and industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call