Abstract
The industrial applications of cellulase are often restricted by its high cost and poor stability under extreme conditions. In this study, cellulase was immobilized using zeolitic imidazolate framework-8 (ZIF-8) through a one-pot encapsulation method, resulting in the formation of cellulase@ZIF-8 composite designed to address these challenges. The effects of varying Zn²⁺/2-methylimidazole molar ratios and different amounts of cellulase on the properties of cellulase@ZIF-8 were systematically investigated. Cellulase was found to act as a nucleation site, accelerating the formation of cellulase@ZIF-8 while promoting controlled crystal growth. At lower Zn²⁺/2-methylimidazole ratios, cross-shaped cellulase@ZIF-8 crystals with moderate enzymatic performance were obtained. Conversely, at higher Zn²⁺/2-methylimidazole ratios, the resulting spindle-shaped cellulase@ZIF-8 crystals exhibited superior enzyme activity of 327.8 U/g, and a relative activity of 88.6 %. Furthermore, this composite demonstrates excellent thermal and storage stability. The immobilized enzyme retained 92.8 % of its activity at a temperature of 70 °C. Additionally, it maintained 69.8 % of its relative enzymatic activity after undergoing five cycles. These findings have significant implications for the future application of cellulase@ZIF-8 composites in efficient and cost-effective lignocellulosic bioconversion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have