Abstract

In this paper, we study the cellularity of some semigroup algebras. We show that the semigroup algebra of a U-semiabundant semigroup with Rees matrix semigroups over monoids as its principal \(\sim _U\)-factors is a cellular algebra if and only if all of the monoid algebras are cellular. We also study the cellularity of the semigroup algebra of a semilattice of Rees matrix semigroups. As consequences, we get the cellularity of super abundant semigroup algebras and complete regular semigroup algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.