Abstract

The aim of this study was to develop a blend of nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/gelatin substrate for limbal stem cell (LSC) expansion that can serve as a potential alternative substrate to replace human amniotic membrane. The human Limbus stem cell was used to evaluate the biocompatibility of substrates (nanofibrous scaffold, and human amniotic membrane) based on their phenotypic profile, viability, proliferation, and attachment ability. Biocompatibility results indicated that the all substrates were highly biocompatible, as LSCs could favorably attach and proliferate on the nanofibrous surface. Microscopic figures showed that the human LSCs were firmly anchored to the substrates and were able to retain a normal corneal stem cell phenotype. Microscopic analyses illustrated that cells infiltrated the nanofibers and successfully formed a three-dimensional corneal epithelium, which was viable for two weeks. Immunocytochemistry (ICC) and real time–PCR results revealed no change in the expression profile of LSCs grown on nanofibrous substrate when compared to those grown on human amniotic membrane. In addition, electrospun nanofibrous PHBV substrate provides not only a milieu supporting LSCs expansion, but also serves as a useful alternative carrier for ocular surface tissue engineering and could be used as an alternative substrate to amniotic membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call